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Can complex engineered and biological networks be coarse-grained into smaller and more understandable
versions in which each node represents an entire pattern in the original network? To address this, we define
coarse-graining units as connectivity patterns which can serve as the nodes of a coarse-grained network and
present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits,
forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained ver-
sion in which each node is a gate made of several transistors is established. Then the coarse-grained network
is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit module made of many
gates. We apply our approach also to a mammalian protein signal-transduction network, to find a simplified
coarse-grained network with three main signaling channels that resemble multi-layered perceptrons made of
cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are “self-
dissimilar,” with different network motifs at each level. The present approach may be used to simplify a variety
of directed and nondirected, natural and designed networks.
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[. INTRODUCTION small as possiblgp) each of which is as simple as possible,

In both engineering and biology it is of interest to under-and which(c) make the coarse-grained network as small as
stand the design of complex netwofis-3], a task known as possmle.. Thg;e three properties can bg termec_:j “concise-
“reverse engineering.” In electronics, digital circuits are en-nNess,” “simplicity,” and “coverage.” Conciseness is defined
gineered from the top down starting from functional blocks,by the number of total CGU types in the dictionary set. Cov-
which are implemented using logic gates, which in turn areerage is the number of nodes and edges eliminated by coarse-
implemented using transistdié]. Reverse engineering of an graining the network using the CGUs. To define simplicity,
electronic circuit means starting with a transistor map andve describe each occurrence of the subgré&has a “black
inferring the gate and block levels. Current approaches tdox.” The black box has input ports and output ports, which
reverse engineering of electronic circuits usually requirerepresent the connections Gfto the rest of the networlkg
prior knowledge of the library of modules used for forward (Fig. 1). There can be four types of nodes@ input nodes
engineerind5,6]. that receive only incoming edges froR) output nodes that

In biology, increasing amounts of interaction networks arehave only outgoing edges ®, internal nodes with no con-
being experimentally characterized, yet there are few systenpection toR, and mixed nodes with both incoming and out-
atic approaches to simplify them into understandable bluegoing edges t&. To obtain a minimal loss of information, a
prints[3,7-18. coarse-grained version @ includes ports, which carry out

Here we present an approach for simplifying networks bythe interface to the rest of the network. The number of ports
creating coarse-grained networks in which each node is # the black box representing is
pattern in the original network. This approach is based on H=1+04+2M (1)
network motifs, significant patterns of connections that recur B ’
throughout the network19-22. We define coarse-graining wherel is the number of input node€) the number of out-
units (CGUs, which can be used as nodes in a coarseput nodes, andl the number of mixed nodé#mternal nodes
grained version of the network. We demonstrate this apdo not contribute ports and each mixed node contributes two
proach by coarse-graining an electronic and a biological netports. The lower the number of ports{, the more “simple”
work. the CGU.

Definition of CGUs CGUs are patterns which can opti-  After defining simplicity, coverage, and conciseness, one
mally serve as nodes in a coarse-grained network. One cagan choose the optimal set of CGUs. To choose the optimal
think of CGUs as elementary circuit components with de-set of CGUs, we maximize a scoring function that combines
fined input and output ports and internal computationakhese features:
nodes. The set of CGUs comprises a dictionary of elements

from which a coarse-grained version of the original network .

is built. The coarse-grained version of the network is a new S=Ecaereat ®AP— SN - 72 T, (2)
network with fewer elements, in which some of the nodes are =

replaced by CGUs. whereE.y,ereq IS the number of edges covered by all occur-

Our approach to define CGUs is loosely analogous to codrences of the CGUs and therefore eliminated in the coarse-
ing principles and to dictionary text compression techniquegrained networkN is the number of distinct CGUs in the set,
[23,24]. The goal is to choose a set of CGUs tifiatis as  andT, is the number of internal nodes in tita CGU. AP is

1539-3755/2005/11)/01612710)/$23.00 016127-1 ©2005 The American Physical Society



ITZKOVITZ et al. PHYSICAL REVIEW E 71, 016127(2009

O Input node (1) The last term in the scoring function, which is the total
® Output node (0) number of internal nodes in the dictionary, prevents the
© Internal node (T) trivial solution where the entire network is replaced by a
® Mixed node (M) single complex CGUe«, B, v are parameters that can be set
V interface ports . e . for various degrees of coarse-grainifige results below are
v : insensitive to varying these parameters over 3 orders of mag-
nitude.
g 3, i L . We use simulated annealif@5,26 to find the optimal set
0=1 of CGUs for coarse-graining: There is potentially a huge
X . 3l . ¥20 number of subgraphs that can serve as candidate CGUs. To

reduce the number of candidate subgraphs and to focus on
those likely to play functional roles, we consider only sub-
: graphs that occur in the network significantly more often
v : than in randomized networks: network motif§9-22. A
L P candidate set of CGUs is obtained by first detecting all net-
!5 g ¥ work motifs of 3—6 node§Appendix A). The nodes of every
* é occurrence of each motif are classified to one of the four
1 types(input, output, internal, or mixedThis defines a con-
nectivity profile for each occurrence. For example, the two
subgraphs in Fig. 1 have the profiled,|, T, T,0) and
(1,I,T,M,0), where I, T, O, and M represent input, internal,
output, and mixed nodes, respectively. The occurrences of
: A each motif are then grouped together according to their pro-
v v file to form a CGU candidattA CGU candidate ofi nodes
is thus characterized by its topologgnn X n adjacency ma-
FIG. 1. Black box representation of a subgraph and the classe@ix) and by a profile vector of length of node classifica-
of nodes and ports. The nodes of the subgrapimbered 1-bare  tjgns (Fig. 3.
classified into input(l), output (O), internal (T), and mixed(M) In the simulated annealing optimization algorithm, each
nodes according to the edges that connect them to the rest of ”@GU candidate is assigned a random spin variable which is
network (dashed arrows The subgraph is represented as a bIaCkeither 1 if all its occurrences participate in the coarse-
box with input and output portsight side of figurg¢. The complex- graining or 0 otherwise. CGU candidates with spin 1 com-
ity measuret is the total number of portda). Subgraph with no pose the “active set.” At.each step a spin is randomly chosen
mixed nodes. The connectivity profile vector(Is,T,T,0) (b) sub- and flipped, and the' coarse-graining score for the new active
graph with a mixed node. The connectivity profile vector is set is combuted The active set is updated according to a
(LLT.M.0). Metropolis Monte Carlo proce:dur[<26].2
) ) . Once an optimal set of CGUs is found, a coarse-grained
the difference between the number of nodes in the originaleresentation of the original network is formed by replacing
network and the number of nodes and ports in the coarsgs;ch occurrence of a CGU with a notfeppendix B. Gen-

=
&

N
2o
Trd

o
<
F
o
=
Tl
=

grained network: erally the coarse-grained representation is a hybrid in which
N some nodes represent CGUs and other nodes are the original
AP =Py ered— > NiH;, (3)  nodes. The algorithm can be repeated on the coarse-grained
i=1 representation to obtain higher levels of coarse-graining.

. Note that the coarse-graining problem is quite different
wherePgereq IS the number of nodes covered by all occur- g0 the well-studied circuit partitioning problefi27] and
rences of the CGUSni IS 'ghe number of occurrences n the from the detection of community structure in networks
netlwork .Of CGUi, a.dei is the number of ports of CGU [28—30. These algorithms seek to divide networks into sub-
Using this we obtain graphs with minimal interconnections, usually resulting in a

N N set of distinct and rather complex subgraphs. In contrast,
S=[Egaperedt @Poavered — | @ MH; + BN+ y >, Ti |. coarsg—graining seeks a small dictionary qf simple subgraph
i=1 i=1 types in order to help understand the function of the network

(4) in terms of recurring independent building blocks. An anal-

The scoring function has two terms: The first term, related to 17, subgraph occurrences with connectivity profile vectdys

coverage, corresponds to the simplification gained by coarsgpgy, are grouped together if there exists a permutafioof the
graining. The second term, corresponding to simplicity andyoges that preserves the subgraph structure and for which the per-
conciseness, quantifies the complexity of the CGU dictioynyted profile vectors obeR(V;) =V,.

nary. MaximizingS favors use of a small set of CGUs, pref-  2The new active set is accepted with probability faie?ST,
erentially those that appear often, with many internal nodesyhereASis the score difference from the previous active set &nd
and few mixed nodessince internal nodes do not contribute is an effective temperature, lowered by a factor of 5% between
ports toH; and mixed nodes contribute two ports sweeps.
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FIG. 3. A partial set of the network motif candidate CGUs for
the transistor level network. The number of occurrences of each
motif in the transistor network is shown. The optimal CGU dictio-
nary consists of four unitésolid boxes, CGU set 13=0.2, =20,

FIG. 2. Transistor level map of an 8-bit binary counter 4=0.03). A second optimal solution consisting of two units, which
(ISCAS89 circuit S20831]). Nodes are junctions between transis- is found for high values oB is also showr{dashed box, CGU set 2,
tors, and directed edges represent wire connections. Highlighted is @=0.2, 5=500, y=0.01). Note that several CGU candidates share

subgraph that represents the transistors that make up@ngate.

the same motif topology. They differ by their connectivity profile
vectors(input/output/internal/mixed

ogy is the detection of words in a text, from which spacesD-flip-flop with an additional logic gatgFig. 4b)]. A “flip-
and punctuation marks have been removed, without priofOP 1evel” coarse-grained network was then formed with

knowledge of the language.

nodes which were either gates or flip-flops. This network had
59 nodes and 97 edges.
We applied the coarse-graining algorithm again to the

flip-flop level network. Two types of CGUs were found

1. COARSE-GRAINING OF AN ELECTRONIC CIRCUIT

To demonstrate the coarse-graining approach we analyzed
an electronic circuit derived from the ISCAS89 benchmark
circuit set[31,32. The circuit is a module used in a digital
fractional multiplier (3208 [31]). The circuit is given as a
netlist of five gate type$AND, OR, NAND, NOR, NOT) and a
D-flipflop (DFF). To synthesize a transistor level implemen-
tation of this circuit(Fig. 2) we first replaced every DFF
occurrence with a standard implementation using foanp
gates and onrOT gate[4]. All gates were then replaced with
their standard transistor-transistor logiETL) implementa-
tion [33], where nodes represent junctions between transis-
tors (for this purpose resistors and diodes were ignored, as
were ground and Vgc The resulting transistor netwoffig.

2) has 516 nodes and 686 edges.

Four CGUs were detected in the transistor network, each
with five or six nodegFigs. 3 and 43)]. These patterns cor-
respond to the transistor implementations of the five basic
logic gatesAND, NAND, NOR, OR, andNOT [Fig. 4(@)]. These

CGUs were used to form a coarse-grained version of the,

a

gate level
nodes are CGUs
made of transistors

NAND/NOT AND

L8y

DA DD D

b

flip-flop level
nodes are gates or CGUs
made of gates

D-flipflop+gate

> 9
3l

C

counter level
nodes are gates or CGUs
made of gates+{lip-flops

v b

CGU 1,2,3 CGU 4

FIG. 4. The CGUs found in the different coarse-grained levels

of the electronic circuit. At the gate level the CGUs are the TTL
plementation ofaND, OR, NAND, NOR, andNOT gates(NAND and

network in which each node is a CGU. In this case coveragRor differ by the type of transistor at the inpuiat the flip-flop
was complete anq all of the original ”Ode“S were includedeyel, a single CGU, occurring 8 times is found. This CGU corre-
within CGUs. This network, termed the “gate-level net-sponds to the five-gate implementation of a D-flip-flop with an ad-

work,” had 99 nodes and 153 edges.

ditional gate at the input. At the counter level, two CGU topologies

We next iterated the coarse-graining process by applyingre found: Seven occurrences of a three-node feedback loop
the algorithm to the gate-level network. One CGU with six+mutual edge and one occurrence of a four-node feedback loop
nodes (gates was detected. This CGU corresponds to a+mutual edge, representing CGUA4.
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FIG. 5. Four levels of representation of the 8-bit counter electronic circuit. In the transistor level network, nodes represent transistor
junctions. In the gate level, nodes are CGUs made of transistors, each representing a logic gate. Shown is the CGU that corresponds to a
NAND gate. In the flip-flop level, nodes are either gates or a CGU made of gates that corresponds to a D-type flip-flop with an additional logic
gate at its input. In the counter level, each node is a gate or a CGU of gates/flip-flops that corresponds to a counter subunit. Numbers of nodes
(P) and edgesE) at each level are shown.

[Fig. 4(c)], which correspond to units of a digital counter. have precisely the same structure. In addition, the character-
Using these CGUs, we constructed the highest-level coarsézation of signaling and regulatory networks is currently in-
grained network in which each node is either a CGU or acomplete due to experimental limitations. Thus a more flex-
gate. This network, depicted in Fig. 5 top panel, had 42ple definition of CGUs is needef4l]. To address these
nodes and 56 edges. Thus, the highest-level coarse-grainggbues we modify our algorithm by allowing each CGU to
network has about 12-fold fewer nodes and edges than th@present a family of subgraphs, which share a common ar-
original transistor-level network. This high-level map corre- chitectural theme. Thus, the CGUs gm@babilistically gen-
sponds to sequential connections of binary counter unitSy gjized network motifs (PGNMs)etwork motifs of differ-
each of which halves the frequency of the binary streamy sizes which approximately share a common connectivity
obtamed from the previous unit. This map thus describes aPattern.

8-bit counter{34]. Probabilistic generalization of network motif§o define

In other electronic circuits, we find other CGUs, including PGNMs, we must first discuss the concept of block models
axoR built of four NAND gates[4,22] (data not shown The  [42_44. A block model is a compact representation of a

coarse-graining approach appears to automatically detect faypgraph. It consists of two elementd) a partition of the
vorite modules used by electronic engineers. subgraph nodes into discrete subsets caties[22] and(2)
a statement about the presence or absence of a connection
between rolegFig. 6). A subgraph ofn nodes can be de-
lll. COARSE-GRAINING OF BIOLOGICAL NETWORKS scribed by an adjacency mati® whereG;; =1 if a directed
edge exists from nodeto nodej and G;;=0 if there is no
Recent studies have shown that biological networks coneonnection. A block model partitions the nodes intom
tain significant network motif§19-22. Theoretical and ex- <nroles according tstructural equivalenceTwo nodes are
perimental studies have demonstrated that each network metructurally equivalent if they share exactly the same connec-
tif performs a key information processing function tions to all other nodes. The block model ism@ax m matrix
[3,17-19,35-4D A coarse-grained version of biological net- A, whereA;;=1 means that all nodes which share rbleave
works is of interest because it would provide a simplifieda directed connection to all nodes which share ddlEig. 6).
representation, focused on these important subcircuits. How- In large subgraphs of real-world networks, perfect struc-
ever, whereas electronic circuits are composed of exact copural equivalence is not always seen. A block model can still
ies of library units, in biology the recurring units may not be used as an idealized structure which can be compared to a
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FIG. 7. Topological generalizations of the bifft9] subgraph
and their adjacency matrices. The bifan subgraph has two roles—
nodes 1, 2 share role 1 and nodes 3, 4 share role 2. Lines indicate
the block-model partition. Below are two generalized subgraphs
obtained by role replicatiof22]. SubgraphG1 (left) is obtained by

FIG. 6. A block-model(top) and two subgraphs, one which fits
the block model(G1, bottom lefy and one which does ndG2,

bolttolm ”%m' (;1 h;ls?se;en noc:l;: snandd_two ro(esydets_ 1._4 shhare replicating the first role, with its connections. Subgraph (right)
role L-and nodes o=/ share rolg s adjacency matrix is SROWn o - pqineqd by replicating the second role, with its connections.

lt))eltow, with dllne3$ m(;jlcagngsthe plogk n;odel pafrt't'??.i f\nthedge Adjacency matrices and block-model partitions are shown. The
etween node S and node 5 1s missing for a perfect it fo the IOroFole-replication operation extends a subgraph while keeping a per-

posed block model. The distance between the block matrix and thFect fit to the block model of the original subgraph

adjacency matrix i€1=0.1075. The right subgrapB2 does not fit '

the proposed block mod@l. The distance between the block matrix

and the adjacency matrix =0.7538. An alternative block model graph withd=0 is perfectly described by its block model.
Subgl’aph, withd=0. Both of these Subgl’aphs are aggregates of %jescrlbed by a block model WII]hIl=2 roles Nodes 1-4 are
four-node bifan subgraptFig. 7). assigned the first role and nodes 57 are assigned the second
role. The distance between the subgraph and the proposed
block model isd=0.1075. Figure 6 also shows a subgraph
given subgraph. The distance between a subgraph and a pfe2, which is far from the proposed block modét
posed block model can be defined 4] =0.7539.
Finding the best block model to fit arbitrary connectivity
data is a combinatorially complex proble@#2—44, requir-
ing exhaustive testing of different assignments of roles to
) o nodes. An efficient algorithm to detect PGNMs can be
whereSy is the within-block sum of squares, formed based on the fact that small network motifs in bio-
logical networks aggregate to fometwork motif topological
Sw=2 2 _ 2 (G =(Gi)? (6)  generalization§22,45. Topological generalizations are sub-
I J ieljed . . . .
graphs obtained from smaller network motifs, by replicating
andS; is the total sum of squares: one or more of their roles, together with its connectifi?®|
(Fig. 7). An algorithm to detect PGNMs is described in Ap-
Sr=2> (G —(G))?, (7)  pendix C.
L To determine the optimal dictionary of CGUs, including
where(G)=2G;;/n? is the mean value o and(G,,) is the the PGNMs, we use the following modified version of the

mean of the adjacency matrix values in blogkJ}. A sub-  Scoring function of Eq(2):

d=— (5)

N N
*This distance measure accounts for the size of the subgraph and S=Ecerea™ adP = AN = ygl i ie{gau Y G ®
- 9

is more appropriate than measures such as the Hamming distance
(number of edges which have to be added or removed to obtain whereN, the number of CGUSs, is the number of basic motifs
perfect fit to a block-modgl used. CGY includes the set of all PGNMs based on the
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shared by both the JNK pathwdZGU1) and P38 pathway

o G (CGU4) [51,57.

. : \ ID . The structure of each CGU is similar to a single-layer
N - 2 AL perceptron, and can allow hard-wired combinatorial activa-
\\ "!‘.“‘{ p ‘\ tion and inhibition of output$19,49. Similar structures are

AN

el found in transcription regulation network&ense overlap-
T /IR S : ” : - !
: "1‘!’/"/’? > 3 ping regulons’[19]). However, in transcription regulation

:_ ii‘-‘a;if\-‘i:lm,, v S networks, these structures are not arranged in cascades. In

-] RO W - f contrast, the protein-signaling network contains CGU cas-
\l 2 ‘\:'/ ‘)' j cades that resemble multilayer perceptrons.
N Ang
' "4’/1"\ “4' ~"~ ‘/ /I V. SELF-DISSIMILARITY OF NETWORK STRUCTURE

LI T S L Ny ‘;‘ 8% ' Interestingly, the coarse-grained signaling network dis-
'\,v\'/',./[i | A"A-‘Agl / plays a different set of network motifs than the original net-

i / /‘ l work, with prominent cascadd$ig. 10c)]. Similarly, the

' electronic network displayed different CGUs at each level

ok ' (Fig. 4). These networks are therefaelf-dissimilar55,56:
the local structure at each level of resolution is different.

0

VI. DISCUSSION

FIG. 8. A network of signal-transduction proteins in mammalian ~ We presented an approach for coarse-graining networks in
cells. which a complex network can be represented by a compact
and more understandable version. We defined optimal units
CGUs. Each CGU can give rise to several PGNMs of differ-for coarse-graining, CGUs, which allow a maximal reduction
ent sizes. of the network, while keeping a concise and simple dictio-
nary of elements. We demonstrated that this method can be
used to fully reverse-engineer electronic circuits, from the
transistor level to the highest module level, without prior
Cells process information from their environment by knowledge of the library components used to create them.
means of networks of protein interactions called signal- For biological networks, where modularity may be less
transduction network§46-54. We analyzed a database of stringent than in electronic circuits, we modified the algo-
mammalian signal transduction interactions based on seithm to seek a coarse-grained network, using a small set of
lected data from the Signal Transduction Knowledge Envi-structures of different sizes that form probabilistically gener-
ronment[54] and literature/46-53. This data set contains alized network motifs. Using this approach, a coarse-grained
94 proteins and 209 directed interactiofgg. 8). We find  version of a mammalian signaling network was established,
that the optimal coarse graining is based on a single motif—sing one CGU composed of cross-activating MAP-kinases.
the four-node bifar{Fig. 9). ThusN=1. We find nine occur- In the coarse-grained network one can easily visualize inter-
rences of PGNMs based on the bifan, labeled CGUO-CGUS&ecting signaling pathways and feedback loops. The present
which share a common design consisting of a row of inpuapproach allows a simplified coarse-grained view of this im-
nodes with overlapping interactions to a row of output nodegortant signaling network, showing the major signaling
(Fig. 9. The input and output rows in these CGUs some-channels, and specifies the recurring circuit elenf@@U)
times represent proteins from the same subfantidg., that may characterize protein signaling pathways in other
JNK1, JNK2, and JNK3 in CGU)3and in other cases they cellular systems and organisms.
represent proteins from different sub-famili@&RK and p38 Biological and electronic networks are both self-
in CGU 6). dissimilar[55,56 showing different network motifs on dif-
Using this CGU, the signaling network can be coarseferent levels. This contrasts with views based on statistical
grained[Fig. 10@)], showing three major signaling channels physics near phase-transition points which emphasize self-
[Fig 10b)]. These channels correspond to the well-studiedsimilarity of complex systems.
ERK, JNK, and p38 MAP-kinase cascades, which respond to It is important to stress that not every network can be
stress signals and growth factgrs6-53. effectively coarse-grained, only networks with particular
Each channel is made of three CGUs in a cascade. In eachodularity and topology. The method can readily be applied
cascade, the top and bottom CGUs contain only posikire  to nondirected networks. It would be interesting to apply this
nase interactions, and the middle CGU contains both posi-approach to additional biological networks, to study the
tive and negative(phosphatageinteractions. The p38 and systems-level function of each CGU and to study which net-
ERK channels intersect at CGU 6. The MAPK phosphatase #vorks evolve to have a topology that can be coarse-grained.
(MKP2) participates in both the JNK pathwdZGU2) and
the ERK pathway(CGU8), whereas MAPK phosphatase 5 ACKNOWLEDGMENTS
(MKP5) participates in both JNK pathwafCGU2) and the We thank J. Doyle, H. McAdams, J. E. Ferrell, Y. Shaul,
P38 pathway(CGU5). The MAPKKK ASK1 and TAK1 are Y. Srebro, E. Dekel, and all members of our lab for valuable

IV. CGUs IN A SIGNAL-TRANSDUCTION NETWORK
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FIG. 9. CGUs in the signal-transduction network. One CGU is found, the four-node bifan with nine PGNMs, numbered CGUO-CGUS.
Solid arrows represent positi&inase interactions; dashed arrows represent negdiNmsphatageinteractions. Open circles represent
duplicated nodegnodes which participate in more than one PGNKI, K2, K3, andK* represent MAP-kinase, kinase-kinase, kinase-kinase-
kinase, etc[46-53.
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FIG. 10. (a) Coarse-grained
version of the signal-transduction
network. Three signaling channels
made of cascades of the CGU oc-
b currences are highlighted. Solid

arrows represent positivikinase
interactions; dashed arrows repre-
sent negativéphosphataseinter-

Original actions. EGFR and PKA have
network /\ been drawn more than once for

TABI

motifs clarity. (b) The three signaling
channels.(c) The network motifs
————————————————— [20] found at the two levels.

Coarse-grained

o nsed &\ AN g network
v \ e motifs
DAXX ————"" -
BAD
a C
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APPENDIX A: DETECTION OF NETWORK MOTIFS
USING RANDOMIZED NETWORKS THAT PRESERVE b
CLUSTERING SEQUENCES

Allowed

<y

set of subgraphs of different sizes found in the network. The /7

complete set of subgraphs is, however, too large for the op- ‘,’7\\_ - 7 l\\‘
timization procedure to effectively work in practid¢éhere / \
are 199 four-node connected directed subgraph types, 9364 \1/ \/
five-node subgraph types, 1530843 six-node subgraph

types, etc., a significant fraction of which actually occur in
the real networks Due to computational limitations, we C Allowed
considered in the present study only a small subset of the N P
subgraphs, those which occur significantly more often in the N Y )5/\
network than in suitably randomized networks. These sub- Y4 47 \r.
graphs are termed network motffs9—22. ar S ———

For the detection of network motifs we considered two \ / /\
randomized ensembles(1l) random networks in which \ \/
each node preserves the number of incoming, outgoing and
mutual edgesedges that run in both directiboconnected to
it in the real network. (2) Random networks in which each d
node preserves the number of incoming, outgoing, and mu-
tual edges connected to it in the real network, and in addition /
each node preserves the clustering coefficient of that node in l j\
the real networK1,2,11]. The detection of network motifs, / j
using ensemblél) as a null hypotheses, was described in \L/ \,/
[19,20. The random networks created this way often have a
different clustering coefficient for each node than in the real G 11, Overlap rules of CGU candidates. In these examples
network. As a result, the number of nondirected triangles inhe cGU candidates are the following(a A three-node feed-
the real network is generally different from the randomizedsorward loop (left) and a four-node diamond subgrafright). (b)
network ensembléeither higher, as in the transistor network, overlap of nodes which receive inputs from only one of the CGUs
or lower, as in the protein signaling netwdrk (left), and coarse-grained representatigight). (c) Overlap of

To assess the effect of imposing clustering constraints onodes which send outputs to two CGUsft) and coarse-grained
the randomized networks, we preserve in the more stringentpresentatiortright). Note the addition of a node upstream of the
ensemble(2) also the clustering coefficient of each nodetwo CGUs, marked with an open circ(®). (d) Two examples of
[1,2,11] (“clustering sequence;’using a simulated annealing disqualified cases, were a node receives inputs from both CGUs:
algorithm. To create such an ensemble of randomized netwo CGUs with a common edgéeft) and without a common edge
works we first randomize the real network with a Markov- (right).
chain Monte Carlo algorithm, which successively selects two
node pairs and performs a “switch,” rewiring their edges, as min{1,e"2ET}, (A2)
described iM20,57]. To define the clustering sequence of a

network ofN nodes{C}}Y,, we treat its nondirected version WhereT is an effective temperature, lowered by a factor of
[11] 5% between sweeps, affit] the energy function, is the dis-

tance between the clustering sequences of the real and ran-
dom networks:

The set of candidate CGUs should ideally be the complete /L /
J

Not allowed

y

2n,

G KD (81

N e - R
E= 2 —|Cf " CIR' , (A3)
whereK; is the number of edges connected to nodehich = '
represent either incoming, outgoing, or mutual edges in th@he random networks obtained have precisely the same clus-
directed versiopandn; is the number of triangles connected tering sequence and degree sequences as the real network.
to nodei. Denoting the clustering sequence of the randoniThey are thus more constrained than in enserfibleln the
networks by{CF}{, we carry out switches, again randomly presently studied networks, they contain almost precisely the
selecting pairs of edges and rewiring them, but this time withsame number of nondirected triangles as the real network.

probability However, the numbers of directed triangle subtypes differ
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from the real network. There are seven types of directed APPENDIX C: ALGORITHM FOR DETECTING PGNMs
three-node triangle subgrapfi0]. The relative abundance  tgpgiogical generalizations of a network motif are sub-
of these seven subgraphs in the random ensemble is det@fraphs obtained from the network motif by replicating one or
mined by different moments of the degree seque8s  more of its roles, together with the connectid®?]. The
Thus, three-node directed subgraphs can still be found agle-replication operation does not increase the number of
motifs using ensembl€?), depending on the network degree roles in the resulting generalized subgraph, which maintains
sequences. For the transistor network and signaling network perfect fit to the block model of the network motif. Addi-
studied, the two sets of network motifs of three to six nodegionally, each node has the same role in both the topological
detected using ensembl€l and(2) had an overlap of more generalization and in every occurrence of the motif included
than 90%. Using ensembl@) on the transistor network re- in it. The role assignment is thus automatically defined.
sults in somewhat fewer motifs that are triangles with dan-Probabilistically generalized network motitPGNM's) are
gling edges, and more treelike motifs than ensenibleUs- ~ subgraphs which have a small distarttgEqg. (5)] from its

ing ensemble2) on the protein signaling network results in block model. To detect PGNMs we start with a network mo-
somewhat fewer treelike motifs. For both networks, thelif 4. The nodes of each occurrence.ofre partitioned into
coarse-graining algorithm detected the same optimal sets éples [22]. We then form a nondirected graj), in which
CGUs using either ensembles. Thus, in the present example&ach ”Odecf is an occurrence gk in the original networkR

coarse-graining is not affected by choice of random networi@nd @ nondirected edge between two nageandr, is setif
ensemble. a) any of the nodes of these occurrences in the original

networkR are connected by an edge (@ any of the nodes
in the original network overlap. After establishirfg, we
APPENDIX B: OVERLAP RULES start from each nodéﬂ and perform a search, consecutively
adding the one node iR, which provides the best fit to the
The desired CGU set should have minimal overlapblock model of u (the resulting joined subgraph with the
(shared nodgsbetween occurrences of the CGUSs. In casesmallest increase id). We stop whend is greater than a
where shared nodes are necessary, the CGU partitionirifyreshold(we use 0.3 When calculating the fit to the block
should be such that the shared nodes do not affect the fungaodel, we partition the nodes of the joined subgraph accord-
tion of each CGU. The solutions that maximize E.or (8) ing to their role assignment in. If a node inR has different
often have significant overlap between the CGUs. Here wéoles in two different occurrences @f, when calculatingd
describe rules that disqualify solutions in which overlapfor the joined subgraph, we take the smallest distance ob-
would interfere with the coarse grained representation. Wéained from all possible labelings of this noffer example,
also describe how an acceptable CGU partitioning is pernodes 3, 4 in subgrapB2 of Fig. 6 share role 1 in the bifan
formed in cases where overlap is allowed. (3,4, 5, 6 and role 2 in the bifaril, 2, 3, 4]. We iterate this
Once a set of CGUs which maximizes the scoring funcrocedure by beginning with eacfy, establishing a list of
tion is found, it is tested for the following criterion: Allowed €mbedded subgraph# two embedded structures have the
solutions are those in which each overlapping node receivesamed we keep only the larger oheThese subgraphs are
inputs from only one CGUFig. 11). CGU sets which do not probabilistic generalizations gk, tagged by their distance
meet this criterion are disqualified, and a new set is soughfrom a perfect generalizationd. In finding the optimal
(Note that the overlapping nodes are allowed to send outpu@oarse-graining we perform a simulated annealing algorithm,
to both CGUS. In acceptable CGU sets, in every case of ansequentially generating a new active set of CGUs, recalcu-
overlap, the overlapping node is duplicated and appears ond@ting the scoring functiohEg. (8)] and accepting the new
in each of the CGU occurrences. The acceptance criteriofCtive set with a Metropolis Monte Carlo probabifftyur-
above ensures that the inputs to the duplicated nodes can B the optimization, we also test the resulting score from
fully captured by one of the CGUs, thus ensuring that thecoarse-graining only subsets of the PGNMs of each CGU.
function or dynamics of the coarse-grained network can pb&or an alternative definition of probabilistic network motifs
inferred from the functions of individual CGUs. Finally, in see[41].
cases where the overlapping node only sends output to the
CGUs and does not receive inputs from them, an additional “when establishing the CGU candidate set, we also ignore the
node is created in the coarse-grained network. This node hasnnectivity profile of subgraphs. This further softens the CGU cri-
all of the connections of the original node and sends outputgria. The present scoring function still favors units with few mixed
to the duplicated node in each CGe.g., MKP2 and MKP5  nodes, because they affect the number of pdisin the coarse-
in Figs. 9, 10, and 1%)]. grained network.
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