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Can complex engineered and biological networks be coarse-grained into smaller and more understandable
versions in which each node represents an entire pattern in the original network? To address this, we define
coarse-graining units as connectivity patterns which can serve as the nodes of a coarse-grained network and
present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits,
forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained ver-
sion in which each node is a gate made of several transistors is established. Then the coarse-grained network
is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit module made of many
gates. We apply our approach also to a mammalian protein signal-transduction network, to find a simplified
coarse-grained network with three main signaling channels that resemble multi-layered perceptrons made of
cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are “self-
dissimilar,” with different network motifs at each level. The present approach may be used to simplify a variety
of directed and nondirected, natural and designed networks.
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I. INTRODUCTION

In both engineering and biology it is of interest to under-
stand the design of complex networksf1–3g, a task known as
“reverse engineering.” In electronics, digital circuits are en-
gineered from the top down starting from functional blocks,
which are implemented using logic gates, which in turn are
implemented using transistorsf4g. Reverse engineering of an
electronic circuit means starting with a transistor map and
inferring the gate and block levels. Current approaches to
reverse engineering of electronic circuits usually require
prior knowledge of the library of modules used for forward
engineeringf5,6g.

In biology, increasing amounts of interaction networks are
being experimentally characterized, yet there are few system-
atic approaches to simplify them into understandable blue-
prints f3,7–18g.

Here we present an approach for simplifying networks by
creating coarse-grained networks in which each node is a
pattern in the original network. This approach is based on
network motifs, significant patterns of connections that recur
throughout the networkf19–22g. We define coarse-graining
units sCGUsd, which can be used as nodes in a coarse-
grained version of the network. We demonstrate this ap-
proach by coarse-graining an electronic and a biological net-
work.

Definition of CGUs. CGUs are patterns which can opti-
mally serve as nodes in a coarse-grained network. One can
think of CGUs as elementary circuit components with de-
fined input and output ports and internal computational
nodes. The set of CGUs comprises a dictionary of elements
from which a coarse-grained version of the original network
is built. The coarse-grained version of the network is a new
network with fewer elements, in which some of the nodes are
replaced by CGUs.

Our approach to define CGUs is loosely analogous to cod-
ing principles and to dictionary text compression techniques
f23,24g. The goal is to choose a set of CGUs thatsad is as

small as possible,sbd each of which is as simple as possible,
and whichscd make the coarse-grained network as small as
possible. These three properties can be termed “concise-
ness,” “simplicity,” and “coverage.” Conciseness is defined
by the number of total CGU types in the dictionary set. Cov-
erage is the number of nodes and edges eliminated by coarse-
graining the network using the CGUs. To define simplicity,
we describe each occurrence of the subgraph,G, as a “black
box.” The black box has input ports and output ports, which
represent the connections ofG to the rest of the network,R
sFig. 1d. There can be four types of nodes inG: input nodes
that receive only incoming edges fromR, output nodes that
have only outgoing edges toR, internal nodes with no con-
nection toR, and mixed nodes with both incoming and out-
going edges toR. To obtain a minimal loss of information, a
coarse-grained version ofG includes ports, which carry out
the interface to the rest of the network. The number of ports
in the black box representingG is

H = I + O + 2M , s1d

whereI is the number of input nodes,O the number of out-
put nodes, andM the number of mixed nodessinternal nodes
do not contribute ports and each mixed node contributes two
portsd. The lower the number of ports,H, the more “simple”
the CGU.

After defining simplicity, coverage, and conciseness, one
can choose the optimal set of CGUs. To choose the optimal
set of CGUs, we maximize a scoring function that combines
these features:

S= Ecovered+ aDP − bN − go
i=1

N

Ti , s2d

whereEcovered is the number of edges covered by all occur-
rences of the CGUs and therefore eliminated in the coarse-
grained network.N is the number of distinct CGUs in the set,
andTi is the number of internal nodes in theith CGU.DP is
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the difference between the number of nodes in the original
network and the number of nodes and ports in the coarse-
grained network:

DP = Pcovered− o
i=1

N

niHi , s3d

wherePcovered is the number of nodes covered by all occur-
rences of the CGUs,ni is the number of occurrences in the
network of CGUi, andHi is the number of ports of CGUi.
Using this we obtain

S= fEcovered+ aPcoveredg − Fao
i=1

N

niHi + bN + go
i=1

N

TiG .

s4d

The scoring function has two terms: The first term, related to
coverage, corresponds to the simplification gained by coarse-
graining. The second term, corresponding to simplicity and
conciseness, quantifies the complexity of the CGU dictio-
nary. MaximizingS favors use of a small set of CGUs, pref-
erentially those that appear often, with many internal nodes
and few mixed nodesssince internal nodes do not contribute
ports toHi and mixed nodes contribute two portsd.

The last term in the scoring function, which is the total
number of internal nodes in the dictionary, prevents the
trivial solution where the entire network is replaced by a
single complex CGU.a ,b ,g are parameters that can be set
for various degrees of coarse-grainingsthe results below are
insensitive to varying these parameters over 3 orders of mag-
nituded.

We use simulated annealingf25,26g to find the optimal set
of CGUs for coarse-graining: There is potentially a huge
number of subgraphs that can serve as candidate CGUs. To
reduce the number of candidate subgraphs and to focus on
those likely to play functional roles, we consider only sub-
graphs that occur in the network significantly more often
than in randomized networks: network motifsf19–22g. A
candidate set of CGUs is obtained by first detecting all net-
work motifs of 3–6 nodessAppendix Ad. The nodes of every
occurrence of each motif are classified to one of the four
typessinput, output, internal, or mixedd. This defines a con-
nectivity profile for each occurrence. For example, the two
subgraphs in Fig. 1 have the profilessI,I,T,T,Od and
sI,I,T,M,Od, where I, T, O, and M represent input, internal,
output, and mixed nodes, respectively. The occurrences of
each motif are then grouped together according to their pro-
file to form a CGU candidate.1 A CGU candidate ofn nodes
is thus characterized by its topologysann3n adjacency ma-
trixd and by a profile vector of lengthn of node classifica-
tions sFig. 3d.

In the simulated annealing optimization algorithm, each
CGU candidate is assigned a random spin variable which is
either 1 if all its occurrences participate in the coarse-
graining or 0 otherwise. CGU candidates with spin 1 com-
pose the “active set.” At each step a spin is randomly chosen
and flipped, and the coarse-graining score for the new active
set is computed. The active set is updated according to a
Metropolis Monte Carlo proceduref26g.2

Once an optimal set of CGUs is found, a coarse-grained
representation of the original network is formed by replacing
each occurrence of a CGU with a nodesAppendix Bd. Gen-
erally the coarse-grained representation is a hybrid in which
some nodes represent CGUs and other nodes are the original
nodes. The algorithm can be repeated on the coarse-grained
representation to obtain higher levels of coarse-graining.

Note that the coarse-graining problem is quite different
from the well-studied circuit partitioning problemf27g and
from the detection of community structure in networks
f28–30g. These algorithms seek to divide networks into sub-
graphs with minimal interconnections, usually resulting in a
set of distinct and rather complex subgraphs. In contrast,
coarse-graining seeks a small dictionary of simple subgraph
types in order to help understand the function of the network
in terms of recurring independent building blocks. An anal-

1Two subgraph occurrences with connectivity profile vectorsV1

andV2 are grouped together if there exists a permutationP of the
nodes that preserves the subgraph structure and for which the per-
muted profile vectors obeyPsV1d=V2.

2The new active set is accepted with probability minh1,eDS/Tj,
whereDS is the score difference from the previous active set andT
is an effective temperature, lowered by a factor of 5% between
sweeps.

FIG. 1. Black box representation of a subgraph and the classes
of nodes and ports. The nodes of the subgraphsnumbered 1–5d are
classified into inputsId, output sOd, internal sTd, and mixedsMd
nodes according to the edges that connect them to the rest of the
network sdashed arrowsd. The subgraph is represented as a black
box with input and output portssright side of figured. The complex-
ity measureH is the total number of ports,sad. Subgraph with no
mixed nodes. The connectivity profile vector issI,I,T,T,Od sbd sub-
graph with a mixed node. The connectivity profile vector is
sI,I,T,M,Od.
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ogy is the detection of words in a text, from which spaces
and punctuation marks have been removed, without prior
knowledge of the language.

II. COARSE-GRAINING OF AN ELECTRONIC CIRCUIT

To demonstrate the coarse-graining approach we analyzed
an electronic circuit derived from the ISCAS89 benchmark
circuit setf31,32g. The circuit is a module used in a digital
fractional multiplier sS208 f31gd. The circuit is given as a
netlist of five gate typessAND, OR, NAND, NOR, NOTd and a
D-flipflop sDFFd. To synthesize a transistor level implemen-
tation of this circuit sFig. 2d we first replaced every DFF
occurrence with a standard implementation using fourNAND

gates and oneNOT gatef4g. All gates were then replaced with
their standard transistor-transistor logicsTTLd implementa-
tion f33g, where nodes represent junctions between transis-
tors sfor this purpose resistors and diodes were ignored, as
were ground and Vccd. The resulting transistor networksFig.
2d has 516 nodes and 686 edges.

Four CGUs were detected in the transistor network, each
with five or six nodesfFigs. 3 and 4sadg. These patterns cor-
respond to the transistor implementations of the five basic
logic gatesAND, NAND, NOR, OR, andNOT fFig. 4sadg. These
CGUs were used to form a coarse-grained version of the
network in which each node is a CGU. In this case coverage
was complete and all of the original nodes were included
within CGUs. This network, termed the “gate-level net-
work,” had 99 nodes and 153 edges.

We next iterated the coarse-graining process by applying
the algorithm to the gate-level network. One CGU with six
nodes sgatesd was detected. This CGU corresponds to a

D-flip-flop with an additional logic gatefFig. 4sbdg. A “flip-
flop level” coarse-grained network was then formed with
nodes which were either gates or flip-flops. This network had
59 nodes and 97 edges.

We applied the coarse-graining algorithm again to the
flip-flop level network. Two types of CGUs were found

FIG. 2. Transistor level map of an 8-bit binary counter
sISCAS89 circuit S208f31gd. Nodes are junctions between transis-
tors, and directed edges represent wire connections. Highlighted is a
subgraph that represents the transistors that make up oneNOT gate.

FIG. 3. A partial set of the network motif candidate CGUs for
the transistor level network. The number of occurrences of each
motif in the transistor network is shown. The optimal CGU dictio-
nary consists of four unitsssolid boxes, CGU set 1,a=0.2, b=20,
g=0.01d. A second optimal solution consisting of two units, which
is found for high values ofb is also shownsdashed box, CGU set 2,
a=0.2, b=500, g=0.01d. Note that several CGU candidates share
the same motif topology. They differ by their connectivity profile
vectorssinput/output/internal/mixedd.

FIG. 4. The CGUs found in the different coarse-grained levels
of the electronic circuit. At the gate level the CGUs are the TTL
implementation ofAND, OR, NAND, NOR, andNOT gatessNAND and
NOT differ by the type of transistor at the inputd. At the flip-flop
level, a single CGU, occurring 8 times is found. This CGU corre-
sponds to the five-gate implementation of a D-flip-flop with an ad-
ditional gate at the input. At the counter level, two CGU topologies
are found: Seven occurrences of a three-node feedback loop
+mutual edge and one occurrence of a four-node feedback loop
+mutual edge, representing CGU4.
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fFig. 4scdg, which correspond to units of a digital counter.
Using these CGUs, we constructed the highest-level coarse-
grained network in which each node is either a CGU or a
gate. This network, depicted in Fig. 5 top panel, had 42
nodes and 56 edges. Thus, the highest-level coarse-grained
network has about 12-fold fewer nodes and edges than the
original transistor-level network. This high-level map corre-
sponds to sequential connections of binary counter units,
each of which halves the frequency of the binary stream
obtained from the previous unit. This map thus describes an
8-bit counterf34g.

In other electronic circuits, we find other CGUs, including
a XOR built of four NAND gatesf4,22g sdata not shownd. The
coarse-graining approach appears to automatically detect fa-
vorite modules used by electronic engineers.

III. COARSE-GRAINING OF BIOLOGICAL NETWORKS

Recent studies have shown that biological networks con-
tain significant network motifsf19–22g. Theoretical and ex-
perimental studies have demonstrated that each network mo-
tif performs a key information processing function
f3,17–19,35–40g. A coarse-grained version of biological net-
works is of interest because it would provide a simplified
representation, focused on these important subcircuits. How-
ever, whereas electronic circuits are composed of exact cop-
ies of library units, in biology the recurring units may not

have precisely the same structure. In addition, the character-
ization of signaling and regulatory networks is currently in-
complete due to experimental limitations. Thus a more flex-
ible definition of CGUs is neededf41g. To address these
issues we modify our algorithm by allowing each CGU to
represent a family of subgraphs, which share a common ar-
chitectural theme. Thus, the CGUs areprobabilistically gen-
eralized network motifs (PGNMs): network motifs of differ-
ent sizes which approximately share a common connectivity
pattern.

Probabilistic generalization of network motifs. To define
PGNMs, we must first discuss the concept of block models
f42–44g. A block model is a compact representation of a
subgraph. It consists of two elements:s1d a partition of the
subgraph nodes into discrete subsets calledroles f22g ands2d
a statement about the presence or absence of a connection
between rolessFig. 6d. A subgraph ofn nodes can be de-
scribed by an adjacency matrixG, whereGij =1 if a directed
edge exists from nodei to node j and Gij =0 if there is no
connection. A block model partitions then nodes intom
øn roles according tostructural equivalence. Two nodes are
structurally equivalent if they share exactly the same connec-
tions to all other nodes. The block model is anm3m matrix
A, whereAIJ=1 means that all nodes which share roleI have
a directed connection to all nodes which share roleJ sFig. 6d.

In large subgraphs of real-world networks, perfect struc-
tural equivalence is not always seen. A block model can still
be used as an idealized structure which can be compared to a

FIG. 5. Four levels of representation of the 8-bit counter electronic circuit. In the transistor level network, nodes represent transistor
junctions. In the gate level, nodes are CGUs made of transistors, each representing a logic gate. Shown is the CGU that corresponds to a
NAND gate. In the flip-flop level, nodes are either gates or a CGU made of gates that corresponds to a D-type flip-flop with an additional logic
gate at its input. In the counter level, each node is a gate or a CGU of gates/flip-flops that corresponds to a counter subunit. Numbers of nodes
sPd and edgessEd at each level are shown.
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given subgraph. The distance between a subgraph and a pro-
posed block model can be defined as3 f44g

d =
SW

ST
, s5d

whereSW is the within-block sum of squares,

SW = o
I

o
J

o
iPI,jPJ

sGij − kGIJld2 s6d

andST is the total sum of squares:

ST = o
i,j

sGij − kGld2, s7d

wherekGl=oGij /n
2 is the mean value ofG andkGIJl is the

mean of the adjacency matrix values in blockhI ,Jj. A sub-

graph withd=0 is perfectly described by its block model.
For example, subgraphG1 in Fig. 6 hasn=7 nodes. It can be
described by a block model withm=2 roles. Nodes 1–4 are
assigned the first role and nodes 5–7 are assigned the second
role. The distance between the subgraph and the proposed
block model isd=0.1075. Figure 6 also shows a subgraph
G2, which is far from the proposed block modelsd
=0.7538d.

Finding the best block model to fit arbitrary connectivity
data is a combinatorially complex problemf42–44g, requir-
ing exhaustive testing of different assignments of roles to
nodes. An efficient algorithm to detect PGNMs can be
formed based on the fact that small network motifs in bio-
logical networks aggregate to formnetwork motif topological
generalizationsf22,45g. Topological generalizations are sub-
graphs obtained from smaller network motifs, by replicating
one or more of their roles, together with its connectionsf22g
sFig. 7d. An algorithm to detect PGNMs is described in Ap-
pendix C.

To determine the optimal dictionary of CGUs, including
the PGNMs, we use the following modified version of the
scoring function of Eq.s2d:

S= Ecovered+ aDP − bN − go
i=1

N

Ti − d o
iPhCGUgj

N

di , s8d

whereN, the number of CGUs, is the number of basic motifs
used. CGUg includes the set of all PGNMs based on the

3This distance measure accounts for the size of the subgraph and
is more appropriate than measures such as the Hamming distance
snumber of edges which have to be added or removed to obtain a
perfect fit to a block-modeld.

FIG. 6. A block-modelstopd and two subgraphs, one which fits
the block modelsG1, bottom leftd and one which does notsG2,
bottom rightd. G1 has seven nodes and two rolessnodes 1–4 share
role 1 and nodes 5–7 share role 2d. Its adjacency matrix is shown
below, with lines indicating the block model partition. An edge
between node 3 and node 6 is missing for a perfect fit to the pro-
posed block model. The distance between the block matrix and the
adjacency matrix isd=0.1075. The right subgraphG2 does not fit
the proposed block modelA. The distance between the block matrix
and the adjacency matrix isd=0.7538. An alternative block model
with three rolessh1,2j, h3, 4j, h5, 6, 7jd would perfectly fit this
subgraph, withd=0. Both of these subgraphs are aggregates of a
four-node bifan subgraphsFig. 7d.

FIG. 7. Topological generalizations of the bifanf19g subgraph
and their adjacency matrices. The bifan subgraph has two roles—
nodes 1, 2 share role 1 and nodes 3, 4 share role 2. Lines indicate
the block-model partition. Below are two generalized subgraphs
obtained by role replicationf22g. SubgraphG1 sleftd is obtained by
replicating the first role, with its connections. SubgraphG2 srightd
is obtained by replicating the second role, with its connections.
Adjacency matrices and block-model partitions are shown. The
role-replication operation extends a subgraph while keeping a per-
fect fit to the block model of the original subgraph.
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CGUs. Each CGU can give rise to several PGNMs of differ-
ent sizes.

IV. CGUs IN A SIGNAL-TRANSDUCTION NETWORK

Cells process information from their environment by
means of networks of protein interactions called signal-
transduction networksf46–54g. We analyzed a database of
mammalian signal transduction interactions based on se-
lected data from the Signal Transduction Knowledge Envi-
ronmentf54g and literaturef46–53g. This data set contains
94 proteins and 209 directed interactionssFig. 8d. We find
that the optimal coarse graining is based on a single motif—
the four-node bifansFig. 9d. ThusN=1. We find nine occur-
rences of PGNMs based on the bifan, labeled CGU0–CGU8,
which share a common design consisting of a row of input
nodes with overlapping interactions to a row of output nodes
sFig. 9d. The input and output rows in these CGUs some-
times represent proteins from the same subfamilyseg.,
JNK1, JNK2, and JNK3 in CGU 3d, and in other cases they
represent proteins from different sub-familiessERK and p38
in CGU 6d.

Using this CGU, the signaling network can be coarse-
grainedfFig. 10sadg, showing three major signaling channels
fFig 10sbdg. These channels correspond to the well-studied
ERK, JNK, and p38 MAP-kinase cascades, which respond to
stress signals and growth factorsf46–53g.

Each channel is made of three CGUs in a cascade. In each
cascade, the top and bottom CGUs contain only positiveski-
nased interactions, and the middle CGU contains both posi-
tive and negativesphosphatased interactions. The p38 and
ERK channels intersect at CGU 6. The MAPK phosphatase 2
sMKP2d participates in both the JNK pathwaysCGU2d and
the ERK pathwaysCGU8d, whereas MAPK phosphatase 5
sMKP5d participates in both JNK pathwaysCGU2d and the
P38 pathwaysCGU5d. The MAPKKK ASK1 and TAK1 are

shared by both the JNK pathwaysCGU1d and P38 pathway
sCGU4d f51,52g.

The structure of each CGU is similar to a single-layer
perceptron, and can allow hard-wired combinatorial activa-
tion and inhibition of outputsf19,49g. Similar structures are
found in transcription regulation networkss“dense overlap-
ping regulons”f19gd. However, in transcription regulation
networks, these structures are not arranged in cascades. In
contrast, the protein-signaling network contains CGU cas-
cades that resemble multilayer perceptrons.

V. SELF-DISSIMILARITY OF NETWORK STRUCTURE

Interestingly, the coarse-grained signaling network dis-
plays a different set of network motifs than the original net-
work, with prominent cascadesfFig. 10scdg. Similarly, the
electronic network displayed different CGUs at each level
sFig. 4d. These networks are thereforeself-dissimilarf55,56g:
the local structure at each level of resolution is different.

VI. DISCUSSION

We presented an approach for coarse-graining networks in
which a complex network can be represented by a compact
and more understandable version. We defined optimal units
for coarse-graining, CGUs, which allow a maximal reduction
of the network, while keeping a concise and simple dictio-
nary of elements. We demonstrated that this method can be
used to fully reverse-engineer electronic circuits, from the
transistor level to the highest module level, without prior
knowledge of the library components used to create them.

For biological networks, where modularity may be less
stringent than in electronic circuits, we modified the algo-
rithm to seek a coarse-grained network, using a small set of
structures of different sizes that form probabilistically gener-
alized network motifs. Using this approach, a coarse-grained
version of a mammalian signaling network was established,
using one CGU composed of cross-activating MAP-kinases.
In the coarse-grained network one can easily visualize inter-
secting signaling pathways and feedback loops. The present
approach allows a simplified coarse-grained view of this im-
portant signaling network, showing the major signaling
channels, and specifies the recurring circuit elementsCGUd
that may characterize protein signaling pathways in other
cellular systems and organisms.

Biological and electronic networks are both self-
dissimilar f55,56g showing different network motifs on dif-
ferent levels. This contrasts with views based on statistical
physics near phase-transition points which emphasize self-
similarity of complex systems.

It is important to stress that not every network can be
effectively coarse-grained, only networks with particular
modularity and topology. The method can readily be applied
to nondirected networks. It would be interesting to apply this
approach to additional biological networks, to study the
systems-level function of each CGU and to study which net-
works evolve to have a topology that can be coarse-grained.
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APPENDIX A: DETECTION OF NETWORK MOTIFS
USING RANDOMIZED NETWORKS THAT PRESERVE

CLUSTERING SEQUENCES

The set of candidate CGUs should ideally be the complete
set of subgraphs of different sizes found in the network. The
complete set of subgraphs is, however, too large for the op-
timization procedure to effectively work in practicesthere
are 199 four-node connected directed subgraph types, 9364
five-node subgraph types, 1 530 843 six-node subgraph
types, etc., a significant fraction of which actually occur in
the real networksd. Due to computational limitations, we
considered in the present study only a small subset of the
subgraphs, those which occur significantly more often in the
network than in suitably randomized networks. These sub-
graphs are termed network motifsf19–22g.

For the detection of network motifs we considered two
randomized ensembles:s1d random networks in which
each node preserves the number of incoming, outgoing and
mutual edgessedges that run in both directiond connected to
it in the real network. s2d Random networks in which each
node preserves the number of incoming, outgoing, and mu-
tual edges connected to it in the real network, and in addition
each node preserves the clustering coefficient of that node in
the real networkf1,2,11g. The detection of network motifs,
using ensembles1d as a null hypotheses, was described in
f19,20g. The random networks created this way often have a
different clustering coefficient for each node than in the real
network. As a result, the number of nondirected triangles in
the real network is generally different from the randomized
network ensembleseither higher, as in the transistor network,
or lower, as in the protein signaling networkd.

To assess the effect of imposing clustering constraints on
the randomized networks, we preserve in the more stringent
ensembles2d also the clustering coefficient of each node
f1,2,11g s“clustering sequence”d, using a simulated annealing
algorithm. To create such an ensemble of randomized net-
works we first randomize the real network with a Markov-
chain Monte Carlo algorithm, which successively selects two
node pairs and performs a “switch,” rewiring their edges, as
described inf20,57g. To define the clustering sequence of a
network ofN nodes,hCiji=1

N , we treat its nondirected version
f11g

Ci =
2ni

KisKi − 1d
, sA1d

whereKi is the number of edges connected to nodei swhich
represent either incoming, outgoing, or mutual edges in the
directed versiond andni is the number of triangles connected
to node i. Denoting the clustering sequence of the random
networks byhCi

Rji=1
N we carry out switches, again randomly

selecting pairs of edges and rewiring them, but this time with
probability

minh1,e−DE/Tj, sA2d

whereT is an effective temperature, lowered by a factor of
5% between sweeps, andE, the energy function, is the dis-
tance between the clustering sequences of the real and ran-
dom networks:

E = o
i=1

N uCi − Ci
Ru

Ci + Ci
R , sA3d

The random networks obtained have precisely the same clus-
tering sequence and degree sequences as the real network.
They are thus more constrained than in ensembles1d. In the
presently studied networks, they contain almost precisely the
same number of nondirected triangles as the real network.
However, the numbers of directed triangle subtypes differ

FIG. 11. Overlap rules of CGU candidates. In these examples
the CGU candidates are the following:sad A three-node feed-
forward loop sleftd and a four-node diamond subgraphsrightd. sbd
Overlap of nodes which receive inputs from only one of the CGUs
sleftd, and coarse-grained representationsrightd. scd Overlap of
nodes which send outputs to two CGUssleftd and coarse-grained
representationsrightd. Note the addition of a node upstream of the
two CGUs, marked with an open circlessd. sdd Two examples of
disqualified cases, were a node receives inputs from both CGUs:
two CGUs with a common edgesleftd and without a common edge
srightd.
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from the real network. There are seven types of directed
three-node triangle subgraphsf20g. The relative abundance
of these seven subgraphs in the random ensemble is deter-
mined by different moments of the degree sequencesf58g.
Thus, three-node directed subgraphs can still be found as
motifs using ensembles2d, depending on the network degree
sequences. For the transistor network and signaling network
studied, the two sets of network motifs of three to six nodes
detected using ensembless1d ands2d had an overlap of more
than 90%. Using ensembles2d on the transistor network re-
sults in somewhat fewer motifs that are triangles with dan-
gling edges, and more treelike motifs than ensembles1d. Us-
ing ensembles2d on the protein signaling network results in
somewhat fewer treelike motifs. For both networks, the
coarse-graining algorithm detected the same optimal sets of
CGUs using either ensembles. Thus, in the present examples,
coarse-graining is not affected by choice of random network
ensemble.

APPENDIX B: OVERLAP RULES

The desired CGU set should have minimal overlap
sshared nodesd between occurrences of the CGUs. In cases
where shared nodes are necessary, the CGU partitioning
should be such that the shared nodes do not affect the func-
tion of each CGU. The solutions that maximize Eq.s2d or s8d
often have significant overlap between the CGUs. Here we
describe rules that disqualify solutions in which overlap
would interfere with the coarse grained representation. We
also describe how an acceptable CGU partitioning is per-
formed in cases where overlap is allowed.

Once a set of CGUs which maximizes the scoring func-
tion is found, it is tested for the following criterion: Allowed
solutions are those in which each overlapping node receives
inputs from only one CGUsFig. 11d. CGU sets which do not
meet this criterion are disqualified, and a new set is sought.
sNote that the overlapping nodes are allowed to send outputs
to both CGUs.d In acceptable CGU sets, in every case of an
overlap, the overlapping node is duplicated and appears once
in each of the CGU occurrences. The acceptance criterion
above ensures that the inputs to the duplicated nodes can be
fully captured by one of the CGUs, thus ensuring that the
function or dynamics of the coarse-grained network can be
inferred from the functions of individual CGUs. Finally, in
cases where the overlapping node only sends output to the
CGUs and does not receive inputs from them, an additional
node is created in the coarse-grained network. This node has
all of the connections of the original node and sends outputs
to the duplicated node in each CGUfe.g., MKP2 and MKP5
in Figs. 9, 10, and 11scdg.

APPENDIX C: ALGORITHM FOR DETECTING PGNMs

Topological generalizations of a network motif are sub-
graphs obtained from the network motif by replicating one or
more of its roles, together with the connectionsf22g. The
role-replication operation does not increase the number of
roles in the resulting generalized subgraph, which maintains
a perfect fit to the block model of the network motif. Addi-
tionally, each node has the same role in both the topological
generalization and in every occurrence of the motif included
in it. The role assignment is thus automatically defined.
Probabilistically generalized network motifssPGNM’sd are
subgraphs which have a small distanced fEq. s5dg from its
block model. To detect PGNMs we start with a network mo-
tif m. The nodes of each occurrence ofm are partitioned into
roles f22g. We then form a nondirected graphRm in which
each noderm

i is an occurrence ofm in the original networkR
and a nondirected edge between two nodesrm

i andrm
j is set if

sad any of the nodes of these occurrences in the original
networkR are connected by an edge orsbd any of the nodes
in the original network overlap. After establishingRm we
start from each noderm

i and perform a search, consecutively
adding the one node inRm which provides the best fit to the
block model ofm sthe resulting joined subgraph with the
smallest increase indd. We stop whend is greater than a
thresholdswe use 0.3d. When calculating the fit to the block
model, we partition the nodes of the joined subgraph accord-
ing to their role assignment inm. If a node inR has different
roles in two different occurrences ofm, when calculatingd
for the joined subgraph, we take the smallest distance ob-
tained from all possible labelings of this nodeffor example,
nodes 3, 4 in subgraphG2 of Fig. 6 share role 1 in the bifan
s3, 4, 5, 6d and role 2 in the bifans1, 2, 3, 4dg. We iterate this
procedure by beginning with eachrm, establishing a list of
embedded subgraphssif two embedded structures have the
samed we keep only the larger oned. These subgraphs are
probabilistic generalizations ofm, tagged by their distance
from a perfect generalization,d. In finding the optimal
coarse-graining we perform a simulated annealing algorithm,
sequentially generating a new active set of CGUs, recalcu-
lating the scoring functionfEq. s8dg and accepting the new
active set with a Metropolis Monte Carlo probability.4 Dur-
ing the optimization, we also test the resulting score from
coarse-graining only subsets of the PGNMs of each CGU.
For an alternative definition of probabilistic network motifs
seef41g.
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